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Owing to the lack of temporally well-constrained Ediacaran fossil localities con-

taining overlapping biotic assemblages, it has remained uncertain if the latest

Ediacaran (ca 550–541 Ma) assemblages reflect systematic biological turnover

or environmental, taphonomic or biogeographic biases. Here, we report new

latest Ediacaran fossil discoveries from the lower member of the Wood

Canyon Formation in Nye County, Nevada, including the first figured reports

of erniettomorphs, Gaojiashania, Conotubus and other problematic fossils. The

fossils are spectacularly preserved in three taphonomic windows and occur

in greater than 11 stratigraphic horizons, all of which are below the

first appearance of Treptichnus pedum and the nadir of a large negative d13C

excursion that is a chemostratigraphic marker of the Ediacaran–Cambrian

boundary. The co-occurrence of morphologically diverse tubular fossils and

erniettomorphs in Nevada provides a biostratigraphic link among latest Edia-

caran fossil localities globally. Integrated with a new report of Gaojiashania from

Namibia, previous fossil reports and existing age constraints, these finds

demonstrate a distinctive late Ediacaran fossil assemblage comprising at least

two groups of macroscopic organisms with dissimilar body plans that ecologi-

cally and temporally overlapped for at least 6 Myr at the close of the Ediacaran

Period. This cosmopolitan biotic assemblage disappeared from the fossil record

at the end of the Ediacaran Period, prior to the Cambrian radiation.
1. Introduction
Three distinctive Ediacaran assemblages have been proposed based on tem-

poral and biostratigraphic distributions of Ediacaran fossils: the Avalon

assemblage (ca 570–560 Ma), the White Sea assemblage (ca 560–550 Ma) and

the Nama assemblage (ca 550–541 Ma) [1–3]. However, the significance of

these three fossil assemblages has remained controversial, and it has been

argued that they are artefacts of provinciality [4], palaeoecology [5,6] or taphon-

omy [7]. By contrast, others have suggested that perceived changes in diversity

and disparity between the different Ediacaran assemblages represent true biotic

turnover within the Ediacaran Period [8].

Disentangling provincial, palaeoecological and taphonomic biases from

biotic turnover is necessary to address the causes and tempo of both evolution

within the Ediacaran Period and the disappearance of the diverse array of

large, macroscopic Ediacaran organisms that preceded the Cambrian radiation
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of animals. This has been difficult due to the scarcity of

Ediacaran fossil localities that contain overlapping biotas

and temporal constraints. Strata from the few localities

containing latest Ediacaran soft-bodied fossils are chrono-

logically constrained by a combination of radioisotopic

ages, chemostratigraphic correlations and overlying early

Cambrian fossiliferous strata.

Fossils described from terminal Ediacaran strata include

enigmatic, soft-bodied macroscopic organisms categorized

in the collectively termed ‘Ediacara biota’ and a variety of cal-

cifying and soft-bodied tubular fossils of uncertain taxonomic

affinities. Similar to modern polyphyletic vermiform organ-

ism diversity, it is likely that Ediacaran vermiform fossils

represent multiple phyla and possibly multiple kingdoms.

Because anatomical details within the tubes are often

poorly preserved or absent, the taxonomic affinities and

phylogenetic relationships of these fossils remain proble-

matic. The biological affinities of erniettomorphs have also

been the subject of taxonomic debate, with suggestions that

they should be classified as osmotrophs [2,9], chordates

[10], cnidarians [11,12] or vendobionts [13,14]. Largely as a

result of these taxonomic uncertainties, recent classification

schemes for the enigmatic, soft-bodied Ediacara biota have

focused on characterizing the morphological disparity of

these Ediacaran organisms [2,8,15] rather than attempting

to force them into a phylogenetic framework.

The temporal distribution of clades of Ediacara biota

suggests that there is a loss in diversity between the White

Sea and Nama assemblages [8]. Globally, the only two

morphoclades of Ediacara biota found in latest Ediacaran

strata are Erniettomorpha and Rangeomorpha. The latest

Ediacaran successions with figured reports of these classic

Ediacara biota are the Nama Group in Namibia [16–18]

and the Dengying Formation (Fm) in South China [19].

Latest Ediacaran soft-bodied tubular body fossils have been

reported from the Nama Group in Namibia [20,21], the

Khatyspyt and Aim Fms in Siberia [22,23], the Dengying

Fm in South China [19,24–26], the Krol and Tal Groups in

India [27], the Itapucumi Group in Paraguay [28], the

Tamengo Fm in Brazil [29], the Blueflower Fm of Northwest

Canada [30], the Deep Spring Fm in Nevada [31–33] and the

Wood Canyon Fm in Nevada [34,35]. The late Ediacaran cal-

cifying fossils Cloudina and Namacalathus have been reported

from a number of localities globally and subsequently recog-

nized as potential late Ediacaran index fossils [36]. Despite

the similar ages of the stratigraphic sequences listed above,

there is little overlap in the soft-bodied fossil assemblages

at these localities; specifically, the classic Ediacaran fossils

reported from the Nama Group are markedly different

from the range of tubular fossils found in temporally correla-

tive strata in South China. Here, we provide the first reports

of Gaojiashania in the Nama Group and new fossils from

terminal Ediacaran strata of the Wood Canyon Fm that

include erniettomorphs and a variety of tubular body fossils

that support a biostratigraphic link between latest Ediacaran

biotic assemblages globally.
2. Background and previous work
(a) Southern Nevada stratigraphy
The late ediacaran to early Cambrian Stirling Quartzite and

Wood Canyon Fm are exposed across southern Nevada and
southeastern California, and comprise up to 1 km mixed car-

bonate and siliciclastic succession that thickens to the

northwest [37]. This study focuses on exposures of these

units in the Montgomery Mountains, Nevada (figure 1a,b).

The upper Stirling Quartzite is a well-sorted and cross-

bedded medium- to very coarse-grained quartz arenite that

records deposition in a shoreface environment [40]. In the

Montgomery Mountains, the Stirling Quartzite interfingers

with siltstone and sandstone of the lowermost Wood

Canyon Fm. The lower member of the Wood Canyon Fm

has three shallowing-up parasequences of siltstone and sand-

stone capped by tan dolomite marker beds, and each

parasequence has been interpreted to record deposition in a

subtidal, shallow marine environment [41–43]. The overlying

middle member of the Wood Canyon Fm incises into the

lower member and is a poorly sorted, cross-stratified sand-

stone to conglomerate that records a fluvial environment

and a prominent sequence boundary [43,44].

The first appearance datum (FAD) of the trace fossil Trep-
tichnus pedum is stratigraphically located just above the second

dolomite marker bed in the lower member of the Wood

Canyon Fm, which contains the nadir of the basal Cambrian

negative d13C excursion (BACE; figure 1b) [45]. Because the

Global Boundary Stratotype Section and Point (GSSP) of the

Cambrian in Newfoundland is intended to coincide with

the FAD of T. pedum [46], the Ediacaran–Cambrian boundary

in the Death Valley region has been placed at the top of the

second parasequence in the lower member of the Wood

Canyon Fm (figure 1b), which is consistent with chemostrati-

graphic age models for the Ediacaran–Cambrian boundary [45].

The only fossils previously reported from the Stirling

Quartzite are poorly preserved calcareous conical fossils from

carbonates in member D of the Stirling Quartzite in the north-

ern Funeral Mountains [47] and problematic ring-shaped

fossils from the upper Stirling Quartzite in the Montgomery

Mountains [35]. Others have suggested that the calcareous

conical fossils are abraded specimens of the late Ediacaran

index fossil Cloudina [35], which is consistent with strati-

graphic correlation to the Cloudina-bearing Reed Dolomite

in the White–Inyo Mountains [41]. The ring-shaped struc-

tures have been tentatively identified as Nimbia medusoid

specimens; however, they are on the surface of a single slab

and could alternatively be abiotic sedimentary structures [35].

Ediacaran fossils that have been previously described

from the lowermost Wood Canyon Fm include casts and

moulds of tubular fossils [35]. A single external tube with

weak transverse annulations was assigned to Archaeichnium,

but, as the authors noted, the taxonomic assignment is tenta-

tive due to poor preservation and lack of additional

specimens [35]. External casts and moulds of narrow annu-

lated and smooth-walled tubes of variable sizes were

identified as possible Cloudina [35]; however, the poor preser-

vation and the morphology of the fossils have led others to

criticize this identification [48]. A paired cast and mould

specimen of a different annulated tubular fossil was ident-

ified as Corumbella due to the presence of a helical, tetra-

radial twist along the main axis of one specimen, and a

single specimen of a smooth-walled tubular fossil preserved

by an external layer of agglutinated mica was identified as

Onuphionella. Additionally, fragments of sandstone with

parallel structural elements were identified as Swartpuntia,

but this is a problematic classification with no complete

specimens or specimens preserving a basal stalk [35]. The

http://rspb.royalsocietypublishing.org/
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ribbed, sac-like fossil Ernietta has also been reported from the

lowest parasequence of the Wood Canyon Fm in the Mon-

tgomery Mountains, Nevada, and in the Salt Spring Hills,

California [49], but has never been figured in a publication.

More recently, a number of new Ediacaran fossils—many

of which are similar in morphology and preservation to the

fossils in this report—were discovered in latest Ediacaran

strata approximately 150 km to the northwest in the Deep

Spring Fm at Mount Dunfee, Nevada [32,33]. The fossils

were found below and within the large negative d13C excur-

sion that is considered to be the BACE, and therefore,

correlative with the excursion in the lower member of the

Wood Canyon Fm [50]. These fossils include carbonaceous

compressions of a multicellular algal fossil Elainabella [33],

pyritized Conotubus, casts and moulds of Gaojiashania and

possible Wutubus, and lightly pyritized compressions of ver-

micular fossils reported from two stratigraphic intervals of

the Deep Spring Fm [32].
(b) Nama Group stratigraphy
There are multiple stratigraphic intervals in the Nama basin

of Namibia containing latest Ediacaran fossils. The fossils

reported here are from Donkergange Farm in the Zaris sub-

basin, the northern of the two subbasins that compose the

Nama foreland basin [51]. In the Donkergange area, the

lower part of the Kuibis Subgroup of the Nama Group is

composed of the Zaris Fm, which is divided into three
formal members. The Dabis Member (Mb), a sandstone to

conglomerate which sits unconformably on basement, is

overlain by the Omkyk Mb, which is composed primarily

of grey to black limestone grainstone (figure 2) [51,53].

The top of the Omkyk Mb is capped by stromatolitic patch

reefs, which are overlain by shale, siltstone, fine sandstone,

and minor calcarenite and limestone beds of the basal Hoog-

land Mb [54,55]. A volcanic ash bed within the lower

Hoogland Mb has been dated with U–Pb zircon geochronol-

ogy at 547.32+0.65 Ma (figure 2) [16,52]. Above the Kuibis

Subgroup, mixed sandstone and siltstone beds of the

Schwarzrand Subgroup contain casts and moulds of tubular

fossils with transverse annulations that were recently

reported and identified as Shaanxilithes ningqiangensis [20].

South of the Zaris subbasin, in the Witputz subbasin of

the Nama foreland, equivalent late Ediacaran strata with

additional age constraints and fossils have been described

[51]. At Swartpunt Farm, Namibia’s youngest erniettomorphs

from the Spitskopf Mb of the Schwarzrand Subgroup are

temporally constrained by U–Pb zircon ash ages of

540.61+0.88 Ma and 538.18+1.24 Ma [52,56]. Combined

U–Pb zircon geochronology and d13C chemostratigraphy

suggest that the Kuibis and Schwarzrand Subgroups were

deposited approximately between 548 and 538 Ma

[16,52,56]. The Witputz subbasin is well known for its assem-

blage of soft-bodied Ediacaran biota that have been described

from beds as low as the Kliphoek Mb, correlative to the Dabis

Mb of the Zaris subbasin, to beds that are just below the top

http://rspb.royalsocietypublishing.org/
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of the Spitskop Mb [16]. These fossils include the frond-like

Rangea, Swartpuntia and Pteridinium, and the sac-like Ernietta
and Namalia [57–60].
3. Material and methods
In the Montgomery Mountains, Nevada, hundreds of fossils

were collected, both in float and in situ, from the lower

member of the Wood Canyon Fm. Fossils were collected from

five separate fault blocks, and five detailed stratigraphic sections

of the upper Stirling Quartzite through lower Wood Canyon Fm

were measured within four of these fault blocks. Distinctive

marker beds were used to construct a composite stratigraphic

section and to place fossiliferous beds into a detailed

stratigraphic framework within the lower Wood Canyon Fm

(figure 1c). Detailed photographs were taken of well-preserved

fossil specimens, some after whitening with ammonium chlor-

ide. The fossils are reposited at the Smithsonian Institution

(catalogue numbers USNM 642300–642311). Carbonate carbon

(d13C) and oxygen (d18O) isotopic measurements were measured

from dolomite samples of the lower member of the Wood

Canyon Fm (see electronic supplementary material for more

details and data).

Gaojiashania specimens were discovered on Donkergange

Farm in the Zaris subbasin in southern Namibia while measuring

a stratigraphic section of the Hoogland Mb of the Kuibis

Subgroup (figure 2).
4. New Ediacaran body fossil reports
(a) Ernietta and problematic cross-hatched body fossil

from Montgomery Mountains, Nevada
Over 10 three-dimensionally preserved Ernietta were discov-

ered in the strata just below and above the first dolomite

marker bed of the lower member of the Wood Canyon Fm.

Like the Ernietta from the Nama assemblage in Namibia
[11,61,62], the Nevada specimens are preserved three-

dimensionally as ribbed sacs of sandstone, surrounded by a

sandstone or siltstone matrix.

Exceptionally preserved specimens occur within a 35 �
30 � 6 cm slab of tan to green micaceous fine to medium

sandstone that was found in float. This slab preserves at

least five Ernietta, a problematic cross-hatched fossil

described below and three smooth cobble-sized clasts

(figure 3a–g). The largest of these fossils is greater than

10 cm in length, and the complete fossils have an irregular

sac-like three-dimensional morphology. The infill of each

Ernietta is medium-grained arenitic sandstone, similar to

the surrounding matrix. The outer wall has cast preservation

of 1–4 mm parallel to subparallel ridges or ribs. Moulds of

these ribs are also preserved in the surrounding matrix (e.g.

figure 3g). In one Ernietta, a suture line is present and exhibits

branching towards the thicker end of the organism

(figure 3c,e,f ). This Ernietta opens towards the flat rounded

clast adjacent to it (figure 3a–c). Additional photographs

are provided in the electronic supplementary material.

Although the Ernietta from the single slab described

above are exceptionally preserved, many other probable

Ernietta fossils from the Montgomery Mountains are poorly

preserved. Channels are common in the lower member of

the Wood Canyon Fm, and loading structures and redepos-

ited siliciclastic cobble clasts within these channels can be

easily confused with poorly preserved Ernietta; in some

cases, it was not possible to distinguish between the two.

However, the uniformity in shape, the occasional well-

defined ridges visible along outer walls, and the morpho-

logical similarities to specimens from the single slab with

exceptionally preserved fossils provide confidence that

some of these poorly preserved specimens can be classified

as Ernietta (figure 3h–k). On most specimens, the ridges on

the outer walls are raised and spaced 0.7–1 cm apart

(figure 3h), but one sac-shaped fossil preserves very fine-

scale (submillimetre) ridges (figure 3j–k). We tentatively

classify this specimen as an erniettomorph, but acknowledge

it could be a different Ediacaran organism entirely. The

Ernietta fossils range in length from 1.5 to 19.0 cm and in

width from 1.0 to 11.0 cm. Most of the fossils are preserved

three dimensionally in sandstone, giving them a ribbed,

ovoid appearance (figure 3h), while others are partially

filled with sediment, similar to deflated sacs (figure 3i).
Possible Ernietta were recovered in situ from sandstone

channels in three distinct stratigraphic horizons: within the

basal 10 m of the Wood Canyon Fm, approximately 35 m

below the base of the first dolomite marker bed of the

lower member of the Wood Canyon Fm and approximately

10 m above the top of this dolomite marker bed (figure 1c).

We emphasize that nearly all of the specimens found in

place are poorly preserved. Similar to specimens reported

from Namibia [63], some of the Ernietta found in situ in

Nevada were preserved clustered together within sandstone

channels. Other single fossils found in situ were preserved

in fine- to medium-grained sandstone, weathering out of silt-

stone or finer-grained sandstone. Because these fossils are

preserved within laterally discontinuous sand channels that

are common throughout the lower member of the Wood

Canyon Fm, their preservation is localized along a bed. The

concentration of Ernietta within these discontinuous sand

channels suggests they could have been transported prior

to burial.
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Inside the same slab with the well-preserved Ernietta fos-

sils is a single problematic finely cross-hatched body fossil

(figure 3a,b). Unlike the Ernietta from this slab that are three

dimensionally infilled with sand, this fossil is preserved as

a cast and mould in micaceous sandstone. One end of the

fossil has well-preserved small- and larger-scale cross-hatch-

ing with a minimum spacing of approximately 1 mm, and
the other end has faint cross-hatching with a minimum spa-

cing of approximately 3 mm (see electronic supplementary

material for more photographs). Several long parallel lines

with spacing of approximately 1 cm are continuous between

the ends. The fossil is subrectangular in shape, with a length

of 8.4 cm and a width of 5.6 cm. The perpendicular cross-

hatching is suggestive of the quadrate spicular skeletons

http://rspb.royalsocietypublishing.org/
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common in fossils of early Palaeozoic poriferans [64].

Based on the limited morphological features of this fossil,

other taxonomic possibilities include a taphomorph of an

erniettomorph and a cnidarian.
alsocietypublishing.org
Proc.R.Soc.B

284:20170934
(b) Diversity of tubular fossils from Montgomery
Mountains, Nevada

There is a diverse assemblage of tubular fossils within the

lower member of the Wood Canyon Fm (figure 4a–h),

some of which are similar in morphology and preservation

to those reported from the Gaojiashan assemblage in South

China [25,65,66] and the Deep Spring assemblage in

Nevada [32]. These tubular fossils are preserved as casts

and moulds in siltstone and fine sandstone, and as three-

dimensional pyrite pseudomorphs. The cast and mould

specimens are found on at least five bedding surfaces

within the basal 10 m of the Wood Canyon Fm, and the pyr-

itized fossils are on at least four bedding planes of green

siltstone approximately 22–27 m above the base of the

Wood Canyon Fm (figure 1c). This is the first report of pyri-

tization of Ediacaran body fossils in the Wood Canyon Fm.

Similar to the assemblage of tubular fossils from the Dengy-

ing and Deep Spring Fms, the tubular fossils in the Wood

Canyon Fm range in size and morphology. Some are compar-

able to previously identified late Ediacaran taxa, while others

remain difficult to classify.
(i) Conotubus
At least two specimens of Conotubus (figure 4a) were col-

lected from a 2 m interval of micaceous green siltstone and

shale in the first parasequence of the Wood Canyon Fm

(figure 1c). In addition, hundreds of poorly preserved speci-

mens of similar shape and size were collected, and likely

many of these fossils are also Conotubus, despite lacking the

diagnostic funnel-in-funnel morphology. The fossils range

from 1 to 2 mm in diameter and from 1.0 to 2.7 cm in

length and are similar in size, morphology and preservation

to the Conotubus from the Dengying [65,67,68] and Deep

Spring Fms [32]. The well-preserved specimens exhibit the

diagnostic funnel-in-funnel structure of cloudiniids and

non-uniform bends that are used to distinguish Conotubus
from Cloudina [67]. All of the fossils collected are red to

brown in colour, reflecting oxidation of a pyrite pseudo-

morph; in some specimens, the pyritized wall has been

partially weathered, leaving behind a cast.
(ii) Corumbella
At least two specimens of Corumbella (figure 4d ) were found

in the same stratigraphic interval as the Conotubus specimens

(figure 1c) and are also preserved as pyrite pseudomorphs

within green siltstone. We identify these specimens as Corum-
bella due to a helical, tetra-radial twist down the main axis

and to their morphological similarity to the paired cast and

mould specimen classified by Hagadorn & Waggoner [35],

which was found at a nearby locality in a similar stratigraphic

position. One of the specimens exhibits faint transverse

annulations (figure 4d ), a feature reported on Corumbella
specimens from Paraguay and Brazil [28,29,69].
(iii) Gaojiashania
Approximately 30 specimens of transversely annulated tubu-

lar fossils were collected from micaceous siltstone and fine

sandstone in between coarse arenitic sandstone channels

within the basal 10 m of the Wood Canyon Fm (figures 1c
and 4c). These fossils are preserved as casts and moulds

and range from 0.2 to 1.0 cm in diameter and from 2.7 to

6.5 cm in length, although the complete length is never pre-

served. The body fossils do not taper and do not have

terminal ends, and they are identified as specimens of Gaojia-
shania due to their similarity in size and morphology to

Gaojiashania specimens from the Dengying [70] and Deep

Spring Fms [32]. In addition to the specimens preserved as

casts and moulds, at least eight pyritized Gaojiashania
(figure 4b) were found in the same stratigraphic interval as

Conotubus and Corumbella (figure 1c). Two of these specimens

are folded or twisted (figure 4b), which demonstrates that the

walls of this organism were flexible. The pyritized specimens

are also identified as Gaojiashania due to the size and mor-

phology of these annulated tubes, and to the absence of

tapering or terminals.

Owing to the similarities between the previously

described single specimens of Onuphionella and Archaeich-
nium [35], and the Gaojiashania fossils described here, we

suggest that these few former fossils are also poorly pre-

served, and are instead poorly preserved casts and moulds

of Gaojiashania. Additionally, we dispute previous reports of

casts and moulds of Cloudina [35] because the morphology

and size ranges of these specimens differ from cloudi-

niids and more closely resemble fossils that we identify as

Gaojiashania, or enigmatic smooth-walled specimens.

(iv) Other enigmatic tubular fossils
Dozens of other enigmatic pyritized tubular fossils were

found in the same stratigraphic interval as the pyritized

Conotubus, Corumbella and Gaojiashania (figure 4e–h), many

of which remain problematic. These smooth-walled fossils

range in diameter from 1 to 5 mm and in length from 0.3 to

7.0 cm, and also vary in morphology. One specimen has a

narrow 1 mm-wide tube wall with non-uniform curvature

(figure 4g). Its length to width ratio is much greater than

that of any other smooth-walled tube from this stratigraphic

interval. Another tubular specimen has continuous longitudi-

nal ridges (figure 4h) that could represent original ridges on

the tube walls or possibly differential pyritization of the orig-

inal wall. Although all of these specimens are smooth-walled

tubular fossils, it is likely that multiple taxa are present due

to the diversity of sizes and morphologies.

(c) Gaojiashania specimen from Donkergange, Namibia
Late Ediacaran strata of the Nama Group in Namibia have

yielded many well-preserved specimens of classic Ediacara

biota from a number of different localities in the Witputz sub-

basin of southern Namibia; however, with the exception of

recently discovered specimens of Shaanxilithes in the Zaris

subbasin [20], no soft-bodied tubular body fossils have

been reported from these strata. Here, we report new trans-

versally annulated tubular body fossils from fine micaceous

sandstone near the base of the Hoogland Mb at Donkergange

Farm that are identified as Gaojiashania due to morphological

similarities to those from China and the Southwest USA

(figure 2). We acknowledge that the Gaojiashania fossils

http://rspb.royalsocietypublishing.org/
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Figure 4. Diverse assemblage of Ediacaran tubular body fossils from the lower member of the Wood Canyon Fm. (a) Pyritized Conotubus specimen. (b) Partially
pyritized Gaojiashania specimen. White arrow marks a fold in the fossil. (c) Mould of a Gaojiashania specimen. (d ) Pyritized Corumbella specimen. (e,f ) Pyritized
smooth-walled tubular fossils. (g) Pyritized narrow, tubular fossil that exhibits non-uniform bends. (h) Partially pyritized smooth-walled tubular fossil with possible
transverse ridges.
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reported here could be synonymous with the Shaanxilithes
fossils that were previously discovered at a higher strati-

graphic position within the same subbasin [20]. The new

fossils were found within 5 m of the Hoogland Mb ash bed

that has a U–Pb zircon age of 547.32+0.65 Ma [16,52], estab-

lishing them as the oldest annulated tubular body fossils

globally and providing an upper radiometric limit on the

FAD of Gaojiashania, potentially an important late Ediacaran

index fossil.
5. Discussion
Although the taxonomic affinities of the tubular body fossils,

erniettomorphs and other problematic body fossils are not

well understood, the data presented herein and in other

recent fossil reports [21,32,65,71–73] from late Ediacaran

strata in a range of taphonomic modes (e.g. pyritization, car-

bonaceous compressions, casts and moulds) have made it

increasingly apparent that a morphologically diverse assem-

blage of macroscopic organisms comprising at least two

disparate phyla existed at the end of the Ediacaran Period.

Specifically, the co-occurrences of Ernietta, Conotubus, Corum-
bella, and Gaojiashania in terminal Ediacaran strata in Nevada

biostratigraphically link a number of late Ediacaran fossil

localities globally to validate the existence of a distinctive cos-

mopolitan biotic assemblage at the close of the Proterozoic,
providing support that the Nama assemblage represents

true biological turnover within the Ediacaran Period rather

than reflecting provincial, palaeoecological or taphonomic

biases.

The fossils reported from Nevada and Namibia are also

globally significant because, combined with previous age

constraints and fossil reports, they help temporally constrain

the biostratigraphic duration of this end-Ediacaran biotic

assemblage. In Namibia, the new report of Gaojiashania is

broadly correlative to strata in the Witputz subbasin that con-

tain Ernietta [51]; the stratigraphic context of these fossils

combined with a previous U–Pb zircon ash age radiometri-

cally constrains the upper limit of the FAD of both of these

fossils globally to ca 547 Ma. In Nevada, the last appearance

datum (LAD) of Ernietta is stratigraphically above the first

dolomite marker bed of the lower Wood Canyon Fm, a bed

that preserves the initial downturn of the BACE

(figure 1b,c), establishing these Ernietta as the youngest

definitive occurrence of classic Ediacara biota in the fossil

record. Furthermore, Gaojiashania and Conotubus occur in

the sediments just below this marker bed and regionally

within the downturn of the BACE [32]. Therefore, the LAD

of each of these fossils is within the onset of a chronostrati-

graphic marker of the Ediacaran–Cambrian boundary, the

nadir of which is thought to be ca 541 Ma [52,74], or possibly

as young as ca 539 Ma [75]. These fossil assemblages from

Nevada and Namibia, combined with the existing

http://rspb.royalsocietypublishing.org/
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radiometric age constraints, demonstrate that erniettomorphs

and a diversity of tubular fossils coexisted and ecologically

overlapped in shallow marine environments for at least

6 Myr at the end of the Ediacaran Period.

In addition, these data provide new constraints for under-

standing coeval environmental and biotic change across the

Ediacaran–Cambrian boundary. Currently, the three leading

hypotheses for the end-Ediacaran extinction are: (i) a gradual,

ecologically driven extinction, (ii) an environmentally driven

extinction, similar to Phanerozoic mass extinctions, and (iii) a

combined scenario in which extinction is both ecologically

and environmentally driven [8]. The biotic replacement

model suggests that Phanerozoic-like metazoans displaced

Ediacara biota through predation and ecological engineering

[8,76]. Although there is no direct evidence for predation

upon the soft-bodied Ediacara biota, diversity metrics

among fossils in the Nama Group compared to older assem-

blages have been used as evidence to support an intra-

Ediacaran biotic replacement model [76]. This argument is

problematic due to the pervasive preservational and geolo-

gical biases in these datasets and the lack of taxonomic

understanding of these biotic assemblages. Still, documen-

tation of a greater diversity of late Ediacaran trace fossils

[20,77,78] has suggested an increase in ecosystem engineering

during the last few million years of the Ediacaran Period. In

addition, recent reports have found a co-occurrence of cloudi-

niids and Cambrian small shelly fossils in a single bed,

demonstrating some degree of biostratigraphic overlap

between distinctive Ediacaran and Cambrian organisms

[23,79,80]. However, cloudiniids are not widely reported

from Cambrian strata and are still considered an end-

Ediacaran index fossil, and holdover taxa are found across

every Phanerozoic extinction event.

The biostratigraphic data presented herein support the

notion that a distinctive Nama assemblage, compositionally

different from earlier Ediacara biota assemblages, was the

result of true biotic turnover within the Ediacaran Period

prior to 547 Ma. This dataset demonstrates that a range of

tubular organisms were coexisting with erniettomorphs for
at least the last 6 Myr of the Ediacaran Period. Instead of tub-

ular organisms gradually replacing Ediacara biota, tubular

organisms and erniettomorphs are found stratigraphically

overlapping from ca 547 Ma until the nadir of the BACE.

Both at Mt. Dunfee [32] and in the Montgomery Mountains,

all Ediacaran body fossil horizons, which total greater than 11

stratigraphic horizons, have been found below the nadir of

the BACE. It is notable that, between these two localities in

Nevada, there are four taphonomic windows [32,33] and,

despite the presence of similar facies in the earliest Cambrian

strata above the BACE, no body fossils have been discovered

in these beds. Therefore, the disappearance of a morphologi-

cally diverse, cosmopolitan biotic assemblage of tubular

fossils and erniettomorphs from the fossil record at the Edia-

caran–Cambrian boundary appears to have coincided with a

major geochemical perturbation, perhaps representing the

first Phanerozoic-style mass extinction event.
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